
ztracker manual

documentation for ztracker - a tracker-style MIDI sequencer.

by Daniel Kahlin

Version 0.1

31st October 2001

ii

This documentation is part of ztracker - a tracker-style MIDI sequencer.

Copyright (c) 2001, Daniel Kahlin <tlr@users.sourceforge.net>

All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the

documentation and/or other materials provided with the distribution.

3. Neither the names of the copyright holders nor the names of their

contributors may be used to endorse or promote products derived

from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

‘‘AS IS´´ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR

CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,

EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,

PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR

PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF

LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING

NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Contents

1 Introduction 1
1.1 Goals . 1
1.2 Features . 1
1.3 What ztracker is Not . 2

2 Getting Started 3
2.1 Getting ztracker . 3
2.2 Installing . 3
2.3 Quick Start . 3
2.4 Configuring . 3
2.5 User Interface . 4

3 Basic Usage 5
3.1 The Pattern Editor . 5
3.2 Player Commands . 5
3.3 Keyboard Shortcuts . 7

3.3.1 Pattern Editing Keys 9
3.3.2 Block Functions Keys 10
3.3.3 Instrument Editor Keys 10
3.3.4 Order Editor Keys . 10
3.3.5 Global Keys . 11
3.3.6 User Interface Keys 11

3.4 Pages . 12
3.5 Editing Song . 12
3.6 Editing Tracks . 12
3.7 Loading . 12
3.8 Saving . 12

4 Advanced Usage 13
4.1 Synchronizing . 13

4.1.1 Receiving Sync from a Hardware Sequencer 13
4.1.2 Receiving Sync from a Software Sequencer 13
4.1.3 Sending Sync to External Equipment 13

iii

CONTENTS iv

4.2 Exporting MIDI Files . 13
4.3 Importing Impulse Tracker Songs 13

A Details 14
A.1 Processing Order . 14
A.2 Pitch Bend Values . 14
A.3 Pitch Slides . 15

B File Formats 17
B.1 Configuration File Formats 17

B.1.1 The zt.conf File Format 17
B.1.2 The colors.conf File Format 18

B.2 Song File Format . 19
B.2.1 Current Song Format 19
B.2.2 New Song Format . 21

B.3 Skin File Format . 23

C Troubleshooting 25

D Contributing to ztracker 26
D.1 Introduction . 26
D.2 Bug/request . 26
D.3 Mailing lists . 26
D.4 Making Skins . 26
D.5 Coding . 27
D.6 Writing Documentation . 27

E Glossary 28

F Acknowledgements 29

List of Figures

v

List of Tables

3.1 Player Commands . 8

A.1 Pitchbend Values for Bend Range 12 15
A.2 Pitchbend Values for Bend Range 24 15
A.3 Pitchbend Values for Bend Ranges 1-12 16

vi

Chapter 1

Introduction

ztracker is a win32 MIDI only tracker with an interface that is almost a 1:1
clone of the popular Impulse Tracker DOS tracking software.

It supports multiple MIDI in and out devices, 64 MIDI tracks (expand-
able to 256), it can sync to an external sequencer via MIDI clock, .mid
export, parameter drawing, 96ppqn resolution, and much more.

The original ztracker code (upto 0.82) was written completely by Christo-
pher Micali, except for the Impulse Tracker loader code, which was written
by Austin Luminais.

Version 0.90 of ztracker was the first build to use SDL, the GPLed graph-
ics and input library. Before 0.90 ztracker used libCON (http://www.photoneffect.com/)
ztracker would not have been possible without libCON.

1.1 Goals

• a MIDI tracker running under atleast win32

• fast, simple interface

• support for multiple out ports

• well documented

1.2 Features

• near 1:1 copy of Impulse Tracker interface

• 64 track sequencer with variable 32-256 rows/pattern, 256 total pat-
terns

• easy use of multiple machines across multiple MIDI devices/interfaces

• rock solid timing that tested as good as cubase (3/496ppqn error)

1

http://www.photoneffect.com/

CHAPTER 1. INTRODUCTION 2

• load/save compressed ztracker (.zt) song files

• volume/effect curve drawing in pattern editor

• Impulse Tracker song file importing

• MIDI file (.mid) export

• auto sync via MIDI-clock

• intelligent midi-in with slave to external sync

1.3 What ztracker is Not

ztracker is not . . .

• . . . A sample player. If you want samples, use a sampling synthesizer
or a virtual sampler w/ an ASIO card. If we wanted sampling ability,
We’d be using buzz. Buy something nice, like an akai or a yamaha.

• . . . A GM composing system. While you can make GM tunes with zt,
that is not what zt is written for. GM, GM2, and XG specific features
will not be implemented.

Chapter 2

Getting Started

2.1 Getting ztracker

The latest ztracker release can be found at the ztracker web page. (http://ztracker.sourceforge.net/)
Releases are named zt-x.y.zip, where x is the version, and y is the revi-
sion. For each release there is also a source code release, which is named
zt-x.y-src.zip. The source code release is only necessary for doing devel-
opment on ztracker .

2.2 Installing

Just unzip the ztracker .zip archive to wherever you want it.

2.3 Quick Start

• Run zt.exe.

• A splash screen will appear. Click to get past it.

• You are now in the pattern editor. CTRL-Tab switches the view mode.
Press F1 for quick help, F12 for the global configuration, F3 for the
instrument editor, F5 for play, F8 for stop, and F2 to get back to the
pattern editor again.

2.4 Configuring

Upon installation ztracker is configured for 640x480 resolution running in a
window. This should be adequate for most people. If you want change the
resolution or window mode, exit ztracker and run the included ztconf.exe
utility. This will let you choose between a number of fixed resolutions, and
toggle fullscreen mode.

3

http://ztracker.sourceforge.net/

CHAPTER 2. GETTING STARTED 4

2.5 User Interface

Fill in the blank!

Chapter 3

Basic Usage

3.1 The Pattern Editor

Pressing F2 bring up the pattern editor. Let’s begin by a showing a row in
the pattern editor set to View mode: Big . . .

E-2 00 7F 024 W2000

E-2 is the note itself. In this case an E played in octave 2.

00 is the instrument number.

7F is the velocity of this note.

024 is the length of the note in subticks.

W2000 is a player command. This particular command sets the pitch bend to
the center position.

The same row looks like this in View mode: Regular . . .

E-2 00 7F 024

. . . like this in View mode: FX . . .

E-2 7F W2000

. . . and like this in View mode: Squish

E-2 7F

3.2 Player Commands

Command A..xx

The player command A..xx will set the ticks per beat value to xx, where xx
is the tpb value in hexadecimal numbers. The only allowed tpb values are 2
(02), 4 (04), 6 (06), 8 (08), 12 (0C), 24 (18) and 48 (30).

5

CHAPTER 3. BASIC USAGE 6

Command C..xx

When the player command C..xx is encountered, the next tick the player
will skip to the next pattern in queue from row xx, where xx is the row in
hexadecimal numbers.

Command D..xx

The player command D..xx delays the current note, volume or note cut with
xx subticks, where xx is the number of subticks in hexadecimal numbers.

Command Exxxx

The player command Exxxx makes a pitch slide down. The pitch bend value
is decremented by xxxx every subtick. E0000 repeats the parameter from
the pitch slide on the previous row.

Command Fxxxx

The player command Fxxxx makes a pitch slide up. The pitch bend value is
incremented by xxxx every subtick. F0000 repeats the parameter from the
pitch slide on the previous row.

Command P....

The player command P.... will send a MIDI program change message
corresponding to the settings in the current instrument.

Command Q..xx

The player command Q..xx will retrigger the note once every xx subticks.

Command R..xx

The player command R..xx will start the arpeggio xx. If xx is 00 the last
started arpeggio will be continued.

Command Sxxyy

The player command Sxxyy sets the MIDI continuous controller xx to the
value yy, where xx and yy are hexadecimal numbers. If xx or yy are 80
their respective last used values will be used again.

CHAPTER 3. BASIC USAGE 7

Command T..xx

The player command T..xx will set the tempo to xx, where xx is the tempo
in hexadecimal numbers. The minimum allowed tempo is 60 bpm (3C), and
the maximum tempo is 240 bpm (F0).

Command Wxxxx

The player command Wxxxx sets the pitch bend to xxxx, where xxxx is the
desired value in hexadecimal numbers. W0000 is maximum down, W3FFF is
maximum up, and W2000 is the center position. W2000 is typically used to
reset the pitch bend after a pitch slide command.

Command X..xx

The player command X..xx will set panning to xx, where xx is the panning
in hexadecimal numbers. 00 is far left, 7F is far right, and 40 is center. (this
command does the same as S0Axx)

Command Zxxyy

The player command Zxxyy will send the midimacro xx, with the optional
parameter yy. If xx is 00 the last used midimacro will be used again. If yy
is 00 the last used value will be used again.

3.3 Keyboard Shortcuts

These are the key commands. Note that name of the keys is from an ameri-
can keyboard layout, but it is their position that counts. I.e some key names
are different if you have a keyboard layout of another country.

CHAPTER 3. BASIC USAGE 8

A..xx Set TPB (ticks per beat)
Cxxxx Pattern break - setting the C marker denotes the end of a pattern.

ex: C0000 will skip to the next pattern, row 0
D..xx Delay note/volume/cut - by xxxx sub-ticks.
Exxxx Pitch slide down, E0000 will repeat the last portamento com-

mand.
Fxxxx Pitch slide up, F0000 will repeat the last portamento down com-

mand.
P.... Send program change message for the current instrument.
Q..xx Retrig note every xx subticks
R..xx Start arpeggio xx. R0000 will continue the last arpeggio
Sxxyy xx is the CC (Continuous Controller) number, yy is the value

(00-80). ex. S0142 will set CC 01 (Mod Wheel) to a value of 42.
>=80 sends last value

T..xx Set tempo to xx bpm
Wxxxx Absolute pitch set, between 0000 and 3FFF, 2000 is no pitch

change, 0000 is max down, 3FFF is max up
X..xx Set panning, 00=left, 40=center, 7F=right
Zxxyy Send midimacro xx with parameter yy. 00 repeats the last used

value

Table 3.1: Player Commands

CHAPTER 3. BASIC USAGE 9

3.3.1 Pattern Editing Keys

Space Turns Edit (or ”Keyjazz”) mode on or off
Home/End Just try them
PgUp/PgDn Up/down 16 rows
Ins/Del Insert/delete row on current track Hold CTRL for ALL

tracks
Tab Next track
SHIFT-Tab Previous track
CTRL-Tab Change pattern edit viewmode
ALT-1 => 0 Mute/unmute track 1-10
ALT-F9 Mute current track
ALT-F10 Solo current track
keypad + Moves ahead one pattern.
keypad - Moves back one pattern.
SHIFT-keypad + Moves ahead one order
SHIFT-keypad - Moves back one order
keypad / Octave down.
keypad * Octave up.
SHIFT-, Select previous instrument.
SHIFT-. Select next instrument.
SHIFT- Switch between regular and effect-draw mode Use

Tab here to switch edit mode
CTRL-1 => 0 Change the step-value in the pattern editor
ALT-‘ Set previous note’s length to distance between note

and current cursor position
ScrollLock Pattern-follow mode (cursor follows playback)

CHAPTER 3. BASIC USAGE 10

3.3.2 Block Functions Keys

CTRL-B Marks the beginning of a select block.
CTRL-E Marks the end of a select block.
CTRL-L Select whole track, pressing it again will select the

entire pattern.
CTRL-U Unselect block
CTRL-C Copy the selected block to the clipboard.
CTRL-P Copy pattern, paste to next empty pattern, and jump

to new pattern
CTRL-V Paste the contents of the clipboard to the cursor lo-

cation.
CTRL-O Overwrite paste
CTRL-M Merge paste the contents of the clipboard with the

contents of the location you’re pasting to.
CTRL-X Cut the selected block. (remove and copy to clip-

board)
CTRL-Z Clear block (hold this one)
CTRL-N Set length of first row of block to length of block
CTRL-W Clear unused volumes
CTRL-I Interpolate effect data thru block
CTRL-T Set all effect and effect data fields of block to same

value as first row in block
CTRL-K Interpolate volume (block)
ALT-Q Transpose block up
ALT-A Transpose block down
CTRL-J Popup scale volume window (10-200 %)
CTRL-‘ Set all note’s lengths in selection to distance between

note and next note
ALT-S Set instruments in block to current instrument
SHIFT-move Block selection (movements are arrows and

PgUp/PgDn)

3.3.3 Instrument Editor Keys

ALT-1 => 1 Quick selects midi device
CTRL-1 => 9 Quick selects midi channel
ALT-T Toggle tracker mode on/off
Mouse-2 Focus a slider

3.3.4 Order Editor Keys

SHIFT-keypad + Moves current order ahead
SHIFT-keypad - Moves current order back

CHAPTER 3. BASIC USAGE 11

3.3.5 Global Keys

F1 Quick Help
F2 Pattern editor - Pressing F2 again while in the pat-

tern editing screen brings up the pattern settings.
F3 Instrument editor
F4 Arpeggio editor
CTRL-F4 Midimacro editor
F10 Song message editor
F5 Song play (F5 PatternDisplay widget, Left-

Right/Space/ALT-1 thru ALT-0/ALT-F9/ALT-F10)
F6 Pattern Play - will play the current pattern being

edited.
F7 Start the song at the current row - If in the pattern

edit mode, F7 will start at the current row, at the
first instance of the pattern in the pattern order. If
in the pattern order screen, F7 will start the song at
the cursor position (by pattern).

SHIFT-F11 Set current order
SHIFT-F7 Play song from the current order
F8 Stop playback
F9 Panic (all midi-off/SHIFT-F9 performs a hard driver

panic)
CTRL-F9 Load Song...
CTRL-F10 Save Song As...
F11 Song Configuration and Order editor
F12 System Configuration (midi dev select)
ALT-F12 About
CTRL-S Save Song
CTRL-ALT-N New Song
ALT-P Song Duration
CTRL-ALT-Q Quit

3.3.6 User Interface Keys

Up/Down Cycles through widgets
Tab Cycles forwards through widgets
SHIFT-Tab Cycles backwards through widgets
Enter Confirms choice
Space Toggles an option or clicks a button
Sliders If you hold CTRL while using Left/Right the slider

will move in bigger steps
Listboxes Up/Down scroll, Space toggles select-items in a list

box
Popups Esc closes, all other UI keys apply

CHAPTER 3. BASIC USAGE 12

3.4 Pages

Fill in the blank!

3.5 Editing Song

Fill in the blank!

3.6 Editing Tracks

Fill in the blank!

3.7 Loading

Pressing CTRL-F9 switches to the load page. Here you may select a file for
loading. Press Enter, or click twice on the file you wish to load. If you have
edited the song currently in memory, you will be asked if you wish to lose
those edits. ztracker loads .zt files. Further if the file you select has the
.it extension, ztracker will try to import it as an Impulse Tracker song.
(see section 4.3 on page 13)

3.8 Saving

Pressing CTRL-F10 switches to the save page. Here you may select a direc-
tory and file name for your song file. Find the correct directory by using the
cursor keys and Tab to cycle through the windows (or use the mouse). Then
enter the desired file name into the text box below the file name selector,
and press Enter to save. If the file already exists, you will be asked if you
wish to overwrite the previous file. You can also select an already existing
file by selecting it as in the load page.
There are two boxes just below the file name text box, selecting if a .zt file
or a .mid file shall be created. This must always be .zt for ztracker to be
able to load the resulting file. Selecting .mid makes ztracker export a MIDI
file. (see section 4.2 on page 13)

Chapter 4

Advanced Usage

4.1 Synchronizing

4.1.1 Receiving Sync from a Hardware Sequencer

ztracker can receive MIDI clock synchronization from a specified MIDI port.
It will start and stop when the master sequencer is started/stopped. It will
also follow MIDI song position pointer messages. Note however that the
latter does not work correctly if the song contains tempo changes or tpb
changes.

4.1.2 Receiving Sync from a Software Sequencer

This works in the same manner as with the hardware sequencer, but you
need to have a software MIDI port which you can transfer the MIDI clocks
through. This is easily done by setting up Hubi’s Loopback Device or MIDI
Yoke.

4.1.3 Sending Sync to External Equipment

ztracker can send MIDI start/stop, and MIDI clock synchronization to a
specified MIDI port. MIDI clocks occur 24 times per quarter note. (24
ppqn). These pulses can be used by external equipment to synchronize to
the tempo of ztracker .

4.2 Exporting MIDI Files

Fill in the blank!

4.3 Importing Impulse Tracker Songs

Fill in the blank!

13

Appendix A

Details

A.1 Processing Order

Tracks are processed in ascending order. Any commands/data in track 1 is
processed and sent before commands/data in track 2, and so on. . . Each
track has its own parameter memory. For example, if you play the same
midi channel from both track 1 and 2 and do a pitch slide in track 1, when
you try continue the pitch slide from track 2, it will start from the same
point that track 1 started from.

A.2 Pitch Bend Values

Pitch effects are ways of setting the MIDI Pitch bend value. Normally a
synth has a pitch bend range defined for each sound. This range determines
how many semitones the pitch is shifted for the maximum pitch bend value,
up or down. Mosts synths allow you to set the range to between 0 and 12,
some even up to 24 (two octaves)

The pitch bend value corresponding to a particular number of semitones
pitch shift can be calculated by the following formula:

value = round

(
8192 +

8192
range

· ∆Psemi

)
(A.1)

Or if cents are preferred:

value = round

(
8192 +

8192
range · 100

· ∆Pcents

)
(A.2)

Note that these formulae gives values from 0 to 16384, and that pitch
bend values range from 0 to 16383. To solve this 16384 is replaced with
16383, the error introduced is unnoticable.

14

APPENDIX A. DETAILS 15

12 11 10 9 8 7 6 5 4 3 2 1
3FFF 3D55 3AAB 3800 3555 32AB 3000 2D55 2AAB 2800 2555 22AB

-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12
1D55 1AAB 1800 1555 12AB 1000 0D55 0AAB 0800 0555 02AB 0000

Table A.1: Pitchbend Values for Bend Range 12

24 23 22 21 20 19 18 17 16 15 14 13
3FFF 3EAB 3D55 3C00 3AAB 3955 3800 36AB 3555 3400 32AB 3155

12 11 10 9 8 7 6 5 4 3 2 1
3000 2EAB 2D55 2C00 2AAB 2955 2800 26AB 2555 2400 22AB 2155

-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12
1EAB 1D55 1C00 1AAB 1955 1800 16AB 1555 1400 12AB 1155 1000

-13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24
0EAB 0D55 0C00 0AAB 0955 0800 06AB 0555 0400 02AB 0155 0000

Table A.2: Pitchbend Values for Bend Range 24

A.3 Pitch Slides

Pitch slides are instructions to the player to update the pitch bend value
every subtick (which is 24 ppqn). ticks is the duration of the slide in number
of rows. tpb is the number of ticks per beat. ∆value is the desired resulting
pitch bend change after ticks ticks have elapsed. slide is the parameter to
use with the slide command.

slide = round

(
∆value · tpb

subticks · ticks

)
(A.3)

This equation can then be merged with the previous pitch formulae.

slide = round

((
8192
range

· ∆Psemi

)
· tpb

24 · ticks

)
(A.4)

slide = round

((
8192

range · 100
· ∆Pcents

)
· tpb

24 · ticks

)
(A.5)

APPENDIX A. DETAILS 16

semi 12 11 10 9 8 7 6 5 4 3 2 1
12 3FFF ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----

11 3D55 3FFF ---- ---- ---- ---- ---- ---- ---- ---- ---- ----

10 3AAB 3D17 3FFF ---- ---- ---- ---- ---- ---- ---- ---- ----

9 3800 3A2F 3CCD 3FFF ---- ---- ---- ---- ---- ---- ---- ----

8 3555 3746 399A 3C72 3FFF ---- ---- ---- ---- ---- ---- ----

7 32AB 345D 3666 38E4 3C00 3FFF ---- ---- ---- ---- ---- ----

6 3000 3174 3333 3555 3800 3B6E 3FFF ---- ---- ---- ---- ----

5 2D55 2E8C 3000 31C7 3400 36DB 3AAB 3FFF ---- ---- ---- ----

4 2AAB 2BA3 2CCD 2E39 3000 3249 3555 399A 3FFF ---- ---- ----

3 2800 28BA 299A 2AAB 2C00 2DB7 3000 3333 3800 3FFF ---- ----

2 2555 25D1 2666 271C 2800 2925 2AAB 2CCD 3000 3555 3FFF ----

1 22AB 22E9 2333 238E 2400 2492 2555 2666 2800 2AAB 3000 3FFF

0 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000

-1 1D55 1D17 1CCD 1C72 1C00 1B6E 1AAB 199A 1800 1555 1000 0000

-2 1AAB 1A2F 199A 18E4 1800 16DB 1555 1333 1000 0AAB 0000 ----

-3 1800 1746 1666 1555 1400 1249 1000 0CCD 0800 0000 ---- ----

-4 1555 145D 1333 11C7 1000 0DB7 0AAB 0666 0000 ---- ---- ----

-5 12AB 1174 1000 0E39 0C00 0925 0555 0000 ---- ---- ---- ----

-6 1000 0E8C 0CCD 0AAB 0800 0492 0000 ---- ---- ---- ---- ----

-7 0D55 0BA3 099A 071C 0400 0000 ---- ---- ---- ---- ---- ----

-8 0AAB 08BA 0666 038E 0000 ---- ---- ---- ---- ---- ---- ----

-9 0800 05D1 0333 0000 ---- ---- ---- ---- ---- ---- ---- ----

-10 0555 02E9 0000 ---- ---- ---- ---- ---- ---- ---- ---- ----

-11 02AB 0000 ---- ---- ---- ---- ---- ---- ---- ---- ---- ----

-12 0000 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----

Table A.3: Pitchbend Values for Bend Ranges 1-12

Appendix B

File Formats

B.1 Configuration File Formats

B.1.1 The zt.conf File Format

The configuration file zt.conf is a text file which contains the settings for
ztracker . Normally this is updated when exiting ztracker or when using the
ztconf utility, however in rare cases you may want to edit it yourself using
a text editor.

An example zt.conf:

screen_width: 640
screen_height: 480
default_pattern_length: 128
default_instrument_global_volume: 127
default_highlight_increment: 8
default_lowlight_increment: 8
key_repeat: 30
key_wait: 250
prebuffer_rows: 8
default_view_mode: 3
skin: default
send_panic_on_stop: no
midi_in_sync: no
fullscreen: no
auto_open_midi: yes
step_editing: yes
autoload_ztfile: no
centered_edit: no
autoload_ztfile_filename: autoload.zt

17

APPENDIX B. FILE FORMATS 18

B.1.2 The colors.conf File Format

The configuration file colors.conf is a text file which contains the color
settings for ztracker .

These entries contain the colors used to draw the beveled ztracker panel.

Background: #A49054
Highlight: #FFDC84
Lowlight: #504428

Text that goes on the ztracker panel and on muted track names.

Text: #000000

Text that goes above each track when they are not muted.

Brighttext: #CFCFCF

Colors used for the information boxes at the top of the screen. Black is the
background color, and Data is the text color.

Data: #00FF00
Black: #000000

Colors for the beat display at the bottom left corner of the ztracker window.

LCDHigh: #FF0000
LCDMid: #A00000
LCDLow: #600000

The color of text that is in the pattern editor and all other boxes except the
top info boxes.

EditText: #808080

The background color of the pattern editor. EditBGlow on lowlight rows,
EditBGhigh on highlight rows, and EditBG everywhere else.

EditBG: #000000
EditBGlow: #14100C
EditBGhigh: #202014

SelectedBGLow is the background color of the pattern editor on a selected
row which is not on a lowlight or highlight row. If a selected row is on a
lowlight or highlight row, SelectedBGHigh is used instead.

SelectedBGLow: #000080
SelectedBGHigh: #0000A8

CursorRowLow is the background color of the pattern editor on the row
the cursor is positioned in if it is not a lowlight or highlight row. If it is
positioned on a lowlight or highlight row, CursorRowHigh is used instead.

CursorRowLow: #202020
CursorRowHigh: #303030

APPENDIX B. FILE FORMATS 19

An example default.colors.conf:

Background: #A49054
Highlight: #FFDC84
Lowlight: #504428
Text: #000000
Data: #00FF00
Black: #000000
EditText: #808080
EditBG: #000000
EditBGlow: #14100C
EditBGhigh: #202014
Brighttext: #CFCFCF
SelectedBGLow: #000080
SelectedBGHigh: #0000A8
LCDHigh: #FF0000
LCDMid: #A00000
LCDLow: #600000
CursorRowHigh: #303030
CursorRowLow: #202020

B.2 Song File Format

The Song File format is the format ztracker uses to store songs on disk.
ztracker song files have the .zt extension.

B.2.1 Current Song Format

Song File Header (ZThd)

0x00 char chunk_name[4] (="ZThd")
0x04 u_int32_t chunk_size
0x05 u_int8_t bpm
0x06 u_int8_t tpb
0x07 u_int8_t max_tracks
0x08 u_int8_t flags

bit 0: SEND_MIDI_CLOCK
bit 1: SEND_MIDI_STOP_START
bit 2: FILE_COMPRESSED
bit 3: SLIDE_ON_SUBTICK
bit 4: SLIDE_PRECISION

bit 5-7: UNDEFINED (always set to zero)
0x09 char title[26]
0x23 <next chunk>

APPENDIX B. FILE FORMATS 20

Song File Pattern Lengths (ZTpl)

0x00 char chunk_name[4] (="ZTpl")
0x04 u_int32_t chunk_size (=256 * sizeof(u_int16_t) = 512)
0x08 u_int16_t pattern_length[256]
0x208 <next chunk>

Song File Order List (ZTol)

0x00 char chunk_name[4] (="ZTol")
0x04 u_int32_t chunk_size (=256 * sizeof(u_int16_t) = 512)
0x08 u_int16_t orderlist[256]
0x208 <next chunk>

Song File Track Mutes (ZTtm)

0x00 char chunk_name[4] (="ZTtm")
0x04 u_int32_t chunk_size (= max_tracks / 8)
0x08 u_int8_t track_mutes[max_tracks / 8]
0x08 + chunk_size <next chunk>

Song File Instrument (ZTin)

0x00 char chunk_name[4] (="ZTin")
0x04 u_int32_t chunk_size
0x08 u_int8_t inst_number
0x09 u_int16_t bank
0x0b u_int8_t patch
0x0c u_int8_t midi_device
0x0d u_int8_t channel + (flags << 4)
0x0e u_int8_t default_volume
0x0f u_int8_t global_volume
0x10 u_int16_t default_length
0x12 u_int8_t transpose
0x13 char title[25]
0x2c <next chunk>

Song File Event List (ZTev)

0x00 char chunk_name[4] (="ZTev")
0x04 u_int32_t chunk_size
0x08 <stream of events>
0x08 + chunk_size <next chunk>

The stream of events is encoded as follows:
Each event starts with a command byte (u int8 t cmd). If cmd is between

APPENDIX B. FILE FORMATS 21

0x00 and 0x3f, the next value is an u int8 t (byte event). If cmd is be-
tween 0x40 and 0x7f, the next value is an u int16 t (word event). If cmd
is between 0x80 and 0xbf, the next value is an u int32 t (dword event). If
cmd is between 0xc0 and 0xff, the next value is an u int16 t telling how
many string bytes that follow. (string event)

In the current Song File revision only byte events and word events are
used. The data first gets set up. After that the data is inserted at the
appropriate row by issuing the 0x41 command. For each new row, only the
data that is actually different from the previous row need to be inserted.

Byte events:
0x01 Note
0x02 Instrument
0x03 Volume
0x04 Effect
0x05 Track (default is initially 0)
0x06 Pattern (default is initially 0)

Word events:
0x41 Insert event at row x
0x42 Length
0x43 Effect data

B.2.2 New Song Format

This is intended as a new format completely replacing the old format for
introduction somewhere before ztracker 1.0. Parts of this specification will
under a transitional period be used together with the old format header.

Song File Header (ZTHD)

(to be defined)

0x00 char chunk_name[4] (="ZTHD")
0x04 u_int32_t chunk_size
0x08 u_int16_t name_len | <= short string
0x0a char name[name_len] | (not 0 terminated)
<to be defined>
0x08 + chunk_size <next chunk>

Song File Song Message (SMSG)

(new as of ztracker 0.94)

APPENDIX B. FILE FORMATS 22

0x00 char chunk_name[4] (="SMSG")
0x04 u_int32_t chunk_size
0x08 u_int32_t song_message_len | <= long string
0x0c char song_message[<song_message_len>] | (not 0 terminated)
0x08 + chunk_size <next chunk>

Song File Arpeggio (ARPG)

(new as of ztracker 0.94)

0x00 char chunk_name[4] (="ARPG")
0x04 u_int32_t chunk_size
0x08 u_int16_t number
0x0a u_int16_t name_len | <= short string
0x0c char name[<name_len>] | (not 0 terminated)
0x0c u_int16_t length
0x0c u_int8_t num_cc
0x0c u_int16_t speed
0x0c u_int16_t repeat_pos
0x0c u_int8_t cc[<num_cc>]
0x0c u_int16_t pitch[<num_entries>]
0x0c u_int8_t ccval[<num_cc>][<num_entries>]
0x08 + chunk_size <next chunk>

Song File Midi Macro (MMAC)

(new as of ztracker 0.94)

0x00 char chunk_name[4] (="MMAC")
0x04 u_int32_t chunk_size
0x08 u_int16_t number
0x0a u_int16_t name_len | <= short string
0x0c char name[<name_len>] | (not 0 terminated)
0x0c + name_len u_int16_t num_entries
0x0e + name_len u_int16_t mididata[<num_entries>]
0x08 + chunk_size <next chunk>

Song File Pattern (PATT)

(to be defined)

0x00 char chunk_name[4] (="PATT")
0x04 u_int32_t chunk_size
0x08 u_int16_t number
0x0a u_int16_t name_len | <= short string
0x0c char name[<name_len>] | (not 0 terminated)

APPENDIX B. FILE FORMATS 23

<to be defined>
0x08 + chunk_size <next chunk>

Song File Instrument (INST)

(to be defined)

0x00 char chunk_name[4] (="INST")
0x04 u_int32_t chunk_size
0x08 u_int16_t number
0x0a u_int16_t name_len | <= short string
0x0c char name[<name_len>] | (not 0 terminated)
<to be defined>
0x08 + chunk_size <next chunk>

Song File Track Mutes (TMUT)

(to be defined)

0x00 char chunk_name[4] (="TMUT")
0x04 u_int32_t chunk_size
<to be defined>
0x08 + chunk_size <next chunk>

Song File Order List (OLST)

(to be defined)

0x00 char chunk_name[4] (="OLST")
0x04 u_int32_t chunk_size
0x0c + name_len u_int16_t num_entries
0x0e + name_len u_int16_t order[<num_entries>]
0x08 + chunk_size <next chunk>

B.3 Skin File Format

NOTE: This format is no longer in use. This section is provided only for
the sake of completeness.
Skin files are containers for a group of files, much like zip archives. An
application can load a contained file from a skin file by refering to its file
name. In ztracker skin files are use to contain graphics data which ztracker
needs.

Each file to be contained in the skin is encoded according to the following
scheme and then concatenated together to form a skin file. The encoding is
split into two parts, the header, and the payload. All data in the header is
stored in little endian order. (i.e the least significant byte is always first)

APPENDIX B. FILE FORMATS 24

Each entry begins with the header. First is the name of the contained
file. namelen is the length of the name, and name is the actual name without
a trailing 0:

0x00 u_int32_t namelen
0x04 char name[namelen]

Then follows the offset in bytes from the beginning of the skin file to where
the payload begins:

0x04+namelen u_int32_t dataoffset

After that follows the uncompressed size, which is the size of the payload
will be after decompression:

0x08+namelen u_int32_t realsize

Then follows the compressed size, which is the size of the payload before
decompression:

0x0c+namelen u_int32_t compressedsize

After that follows a flag which tells us if the payload is compressed. If
compressedflag is 0 the payload is uncompressed. If compressedflag is 1
the payload is compressed.

0x10+namelen u_int32_t compressedflag

Last follows the payload. If compressedflag is 1 this must be encoded in a
way compliant with the zlib specification algorithm [3]. If compressedflag
is 0 this is just a copy of the whole file.

dataoffset char payload[compressedsize]

Appendix C

Troubleshooting

Fill in the blank!

25

Appendix D

Contributing to ztracker

D.1 Introduction

ztracker is an open source project released under the BSD license. This
means you are very welcome to participate in the development of ztracker .
The license guarantees that you work on equal terms with the other develop-
ers. The most urgent need is help writing documentation. Visit the ztracker
web site at http://ztracker.sourceforge.net/ for more information.

D.2 Bug/request

There is a bug and request tracking system at http://ztracker.sourceforge.net/.
Here you can submit bugs, and add suggestions for new features. You
can also send comments, questions, feedback, bugreports, and flames to:
<ztracker-feedback@lists.sourceforge.net>.

D.3 Mailing lists

<ztracker-devel@lists.sourceforge.net> is a mailing list for internal
developer discussions. Feel free to join and read, however non-technical sug-
gestions should be directed to the <ztracker-feedback@lists.sourceforge.net>
address.

D.4 Making Skins

Skins are a collection of graphics files and a color description that ztracker
uses for its apperance.

directory skins\default\
colors.conf
font.fnt

26

http://ztracker.sourceforge.net/
http://ztracker.sourceforge.net/
mailto:ztracker-feedback@lists.sourceforge.net
mailto:ztracker-devel@lists.sourceforge.net
mailto:ztracker-feedback@lists.sourceforge.net

APPENDIX D. CONTRIBUTING TO ZTRACKER 27

buttons.png
logo.png
load.png
save.png
toolbar.png
about.png

The file font.fnt is the font used by ztracker . To edit this you need itf 1.65
or a similar font editor.
The file colors.conf lists the colors that ztracker shall use. Its format is
described in the File Formats chapter.
When your .png’s have been created you may run pngcrush on them to
compress them further. This does not affect the appearance of the graphics,
but instead just optimizes the way the .png’s are stored on disk. The
default and professional skins were reduced by some 20% using this
method.

D.5 Coding

Fill in the blank!

D.6 Writing Documentation

The documentation is written in LATEX. Good help on how to write docu-
ments in LATEX can be found in the book The LATEX Companion [1], and
the freely downloadable The Not So Short Introduction to LATEX2ε [2].

If you are writing documentation on a Windows machine, we recommend
that you use MiKTeX http://www.miktex.org/, which is an easy to use
LATEX distribution.

http://www.miktex.org/

Appendix E

Glossary

tick A tick is when the player moves to the next row.

subtick There are many subticks per tick. How many?

player command A special instruction to the player. Has the form Xyyzz.

hexadecimal number A number written in base=16 instead of base=10 as usual. (0 = 0, 1
= 1, . . . , 9 = 9, 10 = A, . . . , 15 = F, 16 = 10, . . . , 31 = 1F, . . .

28

Appendix F

Acknowledgements

First of all credits to Christopher Micali who came up with the idea
of ztracker and wrote nearly all of the code.

Thanks to Donald E. Knuth who wrote and currently maintains TEX,
the motor which enables LATEX to work.

Patrik Wallström helped out alot on the chapter partitioning of this
manual.

29

Bibliography

[1] Michel Goossens, Frank Mittelbach and Alexander Samarin:
The LATEX Companion, Second Printing, 1994, Addison Wesley,
ISBN 0-201-54199-8

[2] Tobias Oetiker, Hubert Partl, Irene Hyna and Elisabeth Schlegl: The
Not So Short Introduction to LATEX2ε, Version 3.19, 02 April, 2001
ftp://ftp.tex.ac.uk/tex-archive/info/lshort/english/lshort.pdf

[3] L. Peter Deutsch and Jean-Loup Gailly: RFC1950 ZLIB
Compressed Data Format Specification, Version 3.3, 1996
ftp://ftp.uu.net/graphics/png/documents/zlib/zdoc-index.html

[4] Donald E. Hall: Musical Acoustics, Second Edition, 1991, Brooks/Cole,
ISBN 0-534-13248-0

30

ftp://ftp.tex.ac.uk/tex-archive/info/lshort/english/lshort.pdf
ftp://ftp.uu.net/graphics/png/documents/zlib/zdoc-index.html

	Introduction
	Goals
	Features
	What ztracker is Not

	Getting Started
	Getting ztracker
	Installing
	Quick Start
	Configuring
	User Interface

	Basic Usage
	The Pattern Editor
	Player Commands
	Keyboard Shortcuts
	Pattern Editing Keys
	Block Functions Keys
	Instrument Editor Keys
	Order Editor Keys
	Global Keys
	User Interface Keys

	Pages
	Editing Song
	Editing Tracks
	Loading
	Saving

	Advanced Usage
	Synchronizing
	Receiving Sync from a Hardware Sequencer
	Receiving Sync from a Software Sequencer
	Sending Sync to External Equipment

	Exporting MIDI Files
	Importing Impulse Tracker Songs

	Details
	Processing Order
	Pitch Bend Values
	Pitch Slides

	File Formats
	Configuration File Formats
	The zt.conf File Format
	The colors.conf File Format

	Song File Format
	Current Song Format
	New Song Format

	Skin File Format

	Troubleshooting
	Contributing to ztracker
	Introduction
	Bug/request
	Mailing lists
	Making Skins
	Coding
	Writing Documentation

	Glossary
	Acknowledgements

